European dental markets trend towards group practices and consolidation

COLOGNE, Germany: Latest market figures released by the Federation of the European Dental Industry (FIDE), in cooperation with the Association of European Dental Dealers (ADDE), last month at the International Dental Show in Cologne, indicate rapid changes toward a digital dentistry manifesting in overall trends to a more global approach with group practices and consolidations throughout dental markets in Europe. The organisation’s 2015 market survey also revealed that the number of European dentists has slightly increased to a total of 276,090 in 2014 compared to 270,045 the year before.

A contrary trend showed in the number of dental offices and dental laboratories. While the numbers of the former remained flat on average, the total figures of labs in Europe has decreased in almost every surveyed country. According to ADDE President Dominique Deschietere, given the growing numbers of practicing dentists this development either indicates a trend to group practices or consolidation.

While the number of dental technicians has remained steady or slightly decreased in all countries except Hungary, the number of dental hygienists increased in all countries of the survey. This development is especially prominent in the UK, with the number of dental hygienists growing distinctively compared to 2013. As Deschietere has put it, this seems to be a result of the evermore “bending of the laws” in this area.

On the supply channels side, the percentage of direct sales from manufacturers remained steady in most countries, and the share of products purchased via e-mail or internet is constantly, if only slightly, increasing compared to the previous year. Further, the figures indicate that the sales volume of equipment has dropped in 2014, while sales of sundries and consumables remained stable on average. “Dentists continue to treat patients,” Deschietere pointed out. “Consumables and sundries, not new equipment like CAD/CAM units or intra-oral X-ray units, kept the figures up during the last years.”

To this date the gathering of information on new technologies seems to be the weak point of the survey. Although Germany shows a jump in the numbers of intra-oral scanners installed, most countries are not collecting data on the subject so far, explained Deschietere.

The annual ADDE/FIDE survey, which is conducted through its national associations since 1998 and represents the interests of more than 960 dental dealer organisations, covers the most relevant topics and trends for the European Dental Industry, such as the number of customers and end users, sales values for the main product categories, the use of computer and e-commerce, sales segments, distribution channels as well as VAT charges and their impact on the market.
Per-Ingar Brånemark – An innovative genius

Prof. Tomas Albrektsson, Sweden, remembers the man who changed dentistry with the discovery of osseointegration of dental implants

Per-Ingar Brånemark passed away on 20 December 2014 at the age of 85. Throughout his career as a researcher, he overcame fierce opposition to dental implants and revolutionised methods for treating edentulous patients.

An extremely gifted scientist, Brånemark was also as witty and quick on his feet as they come. Various language editions of Reader’s Digest, hardly considered a medical journal, published an article in the late 1960s about his research on microcirculation. At the end of his first lecture about dental implants in Landskrona in Sweden in 1969, a member of the audience, who turned out to be a senior academic of Swedish dentistry, rose and commented, “This may prove to be a popular article, but I simply do not trust people who publish themselves in Reader’s Digest.” As it happened, that senior academic was well-known to the Swedish public for having recommended a particular brand of toothpick. Brånemark immediately rose and struck back, saying, “And I don’t trust people who, when they have three toes, may have to use boxes of toothpicks.”

Young and naive as I was, I thought they were just poking fun at each other, but it turned out to be the opening shot of an eight-year battle with the dental profession. When someone cast aspersions on dental implants several years later because Brånemark was not a practitioner, he lost no time in replying, “Teaching them anatomy is good enough for me.”

Brånemark completed his medical training at Lund University in 1959 with a doctoral thesis on microcirculation in the filula of rabbits. Grinding the bone to a state of transparency permitted the use of intravital microscopy to analyse the blood flow in both bone and marrow tissue. The thesis, which found wide acceptance both in Sweden and abroad, landed Brånemark an appointment at the Department of Anatomy. He then went on to rest until 1977, when three professors at Umeå University in Sweden announced that Brånemark’s research was the recommended first-line treatment. Opposition in other countries eventually waned as well and dental implants, originally manufactured by a mechanic in the basement of the Department of Anatomy, scored one international triumph after another.

Today, the Department of Anatomy. Brånemark used a hollow optical device surrounded by titanium to study microcirculation in rabbit bone, permitting both bone and blood vessels to grow through a cleft where they could be examined by means of light microscopy. During such an experiment in 1962, he discovered that the optical device had fused into the bone, a process that he eventually dubbed osseointegration. He revealed his incomparable strength as a researcher at that very moment, realising immediately that the discovery had clinical potential and determining to focus on the development of dental implants, an enterprise that had hitherto been regarded as beyond the scope of medical science.

Brånemark grasped the fundamental truth that edentulosity represents a significant disability, particularly for people who cannot tolerate dentures for some reason. He operated on his first patient in 1965, a mere three years later. The academic community was largely distrustful and hostile to the new approach. The debate was not put to rest until 1977, when three professors at Umeå University in Sweden announced that Brånemark’s technique was the recommended first-line treatment. Opposition in other countries eventually waned as well and dental implants, originally manufactured by a mechanic in the basement of the Department of Anatomy, scored one international triumph after another.

Today, the Department of Anatomy. Brånemark used a hollow optical device surrounded by titanium to study microcirculation in rabbit bone, permitting both bone and blood vessels to grow through a cleft where they could be examined by means of light microscopy. During such an experiment in 1962, he discovered that the optical device had fused into the bone, a process that he eventually dubbed osseointegration. He revealed his incomparable strength as a researcher at that very moment, realising immediately that the discovery had clinical potential and determining to focus on the development of dental implants, an enterprise that had hitherto been regarded as beyond the scope of medical science.

Brånemark grasped the fundamental truth that edentulosity represents a significant disability, particularly for people who cannot tolerate dentures for some reason. He operated on his first patient in 1965, a mere three years later. The academic community was largely distrustful and hostile to the new approach. The debate was not put to rest until 1977, when three professors at Umeå University in Sweden announced that Brånemark’s technique was the recommended first-line treatment. Opposition in other countries eventually waned as well and dental implants, originally manufactured by a mechanic in the basement of the Department of Anatomy, scored one international triumph after another.

Today, the Department of Anatomy. Brånemark used a hollow optical device surrounded by titanium to study microcirculation in rabbit bone, permitting both bone and blood vessels to grow through a cleft where they could be examined by means of light microscopy. During such an experiment in 1962, he discovered that the optical device had fused into the bone, a process that he eventually dubbed osseointegration. He revealed his incomparable strength as a researcher at that very moment, realising immediately that the discovery had clinical potential and determining to focus on the development of dental implants, an enterprise that had hitherto been regarded as beyond the scope of medical science.

Brånemark grasped the fundamental truth that edentulosity represents a significant disability, particularly for people who cannot tolerate dentures for some reason. He operated on his first patient in 1965, a mere three years later. The academic community was largely distrustful and hostile to the new approach. The debate was not put to rest until 1977, when three professors at Umeå University in Sweden announced that Brånemark’s technique was the recommended first-line treatment. Opposition in other countries eventually waned as well and dental implants, originally manufactured by a mechanic in the basement of the Department of Anatomy, scored one international triumph after another.

Today, the Department of Anatomy. Brånemark used a hollow optical device surrounded by titanium to study microcirculation in rabbit bone, permitting both bone and blood vessels to grow through a cleft where they could be examined by means of light microscopy. During such an experiment in 1962, he discovered that the optical device had fused into the bone, a process that he eventually dubbed osseointegration. He revealed his incomparable strength as a researcher at that very moment, realising immediately that the discovery had clinical potential and determining to focus on the development of dental implants, an enterprise that had hitherto been regarded as beyond the scope of medical science.

Brånemark grasped the fundamental truth that edentulosity represents a significant disability, particularly for people who cannot tolerate dentures for some reason. He operated on his first patient in 1965, a mere three years later. The academic community was largely distrustful and hostile to the new approach. The debate was not put to rest until 1977, when three professors at Umeå University in Sweden announced that Brånemark’s technique was the recommended first-line treatment. Opposition in other countries eventually waned as well and dental implants, originally manufactured by a mechanic in the basement of the Department of Anatomy, scored one international triumph after another.

Today, the Department of Anatomy. Brånemark used a hollow optical device surrounded by titanium to study microcirculation in rabbit bone, permitting both bone and blood vessels to grow through a cleft where they could be examined by means of light microscopy. During such an experiment in 1962, he discovered that the optical device had fused into the bone, a process that he eventually dubbed osseointegration. He revealed his incomparable strength as a researcher at that very moment, realising immediately that the discovery had clinical potential and determining to focus on the development of dental implants, an enterprise that had hitherto been regarded as beyond the scope of medical science.

Brånemark grasped the fundamental truth that edentulosity represents a significant disability, particularly for people who cannot tolerate dentures for some reason. He operated on his first patient in 1965, a mere three years later. The academic community was largely distrustful and hostile to the new approach. The debate was not put to rest until 1977, when three professors at Umeå University in Sweden announced that Brånemark’s technique was the recommended first-line treatment. Opposition in other countries eventually waned as well and dental implants, originally manufactured by a mechanic in the basement of the Department of Anatomy, scored one international triumph after another.

Today, the Department of Anatomy. Brånemark used a hollow optical device surrounded by titanium to study microcirculation in rabbit bone, permitting both bone and blood vessels to grow through a cleft where they could be examined by means of light microscopy. During such an experiment in 1962, he discovered that the optical device had fused into the bone, a process that he eventually dubbed osseointegration. He revealed his incomparable strength as a researcher at that very moment, realising immediately that the discovery had clinical potential and determining to focus on the development of dental implants, an enterprise that had hitherto been regarded as beyond the scope of medical science.